Switching between selection and fusion in combining classifiers: an experiment
نویسنده
چکیده
This paper presents a combination of classifier selection and fusion by using statistical inference to switch between the two. Selection is applied in those regions of the feature space where one classifier strongly dominates the others from the pool [called clustering-and-selection or (CS)] and fusion is applied in the remaining regions. Decision templates (DT) method is adopted for the classifier fusion part. The proposed combination scheme (called CS+DT) is compared experimentally against its two components, and also against majority vote, naive Bayes, two joint-distribution methods (BKS and a variant due to Wernecke (1988)), the dynamic classifier selection (DCS) algorithm DCS_LA based on local accuracy (Woods et al. (1997)), and simple fusion methods such as maximum, minimum, average, and product. Based on the results with five data sets with homogeneous ensembles [multilayer perceptrons (NLPs)] and ensembles of different classifiers, we offer a discussion on when to combine classifiers and how classifier selection (static or dynamic) can be misled by the differences in the classifier team.
منابع مشابه
Classifier selection for majority voting
Individual classification models are recently challenged by combined pattern recognition systems, which often show better performance. In such systems the optimal set of classifiers is first selected and then combined by a specific fusion method. For a small number of classifiers optimal ensembles can be found exhaustively, but the burden of exponential complexity of such search limits its prac...
متن کاملFeature selection using genetic algorithm for breast cancer diagnosis: experiment on three different datasets
Objective(s): This study addresses feature selection for breast cancer diagnosis. The present process uses a wrapper approach using GA-based on feature selection and PS-classifier. The results of experiment show that the proposed model is comparable to the other models on Wisconsin breast cancer datasets. Materials and Methods: To evaluate effectiveness of proposed feature selection method, we ...
متن کاملRecognition of Isolated Handwritten Kannada Numerals based on Decision Fusion Approach
combining classifiers appears as a natural step forward when a critical mass of knowledge of single classifier models has been accumulated. Although there are many unanswered questions about matching classifiers to real-life problems, combining classifiers is rapidly growing and enjoying a lot of attention from pattern recognition and machine learning communities. For any pattern classification...
متن کاملExperiments on Individual Classifiers and on Fusion of a Set of Classifiers
In the last decades many classification methods and fusers have been developed. Considerable gains have been achieved in the classification performance by fusing and combining different classifiers. We experiment a new method for ship infrared imagery recognition based on the fusion of individual results in order to obtain a more reliable decision [1]. To optimize the results of every class of ...
متن کاملGenetic algorithms in classifier fusion
An intense research around classifier fusion in recent years revealed that combining performance strongly depends on careful selection of classifiers to be combined. Classifier performance depends, in turn, on careful selection of features, which could be further restricted by the subspaces of the data domain. On the other hand, there is already a number of classifier fusion techniques availabl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society
دوره 32 2 شماره
صفحات -
تاریخ انتشار 2002